Factoring Polynomials: Equating Coefficients

Equating polynomials is a more efficient way to factor polynomials compared to long division; moreover, the pitfalls of synthetic division could be avoided.

Suppose an $m^{\text {th }}$ degree polynomial, $f(x)$, is a factor of an $n^{\text {th }}$ degree polynomial, $P(x)$; then $P(x)$ can be written as a product of $f(x)$ and an $(n-m)^{\text {th }}$ degree polynomial, that is,

$$
P(x)=f(x) \cdot\left((n-m)^{\text {th }} \text { degree polynomial }\right)
$$

The coefficients of the $(n-m)^{\text {th }}$ degree polynomial can be determined by comparing corresponding coefficients on the left and on the right side of the equation above.

For example, $x+1$ is a factor of the polynomial $p(x)=x^{3}+x^{2}-4 x-4$; as $p(x)$ is a cubic, it can be written as the product of $x+1$ and a quadratic, that is,

$$
\begin{aligned}
p(x) & =\left(a x^{2}+b x+c\right)(x+1) \\
x^{3}+x^{2}-4 x-4 & =\left(a x^{2}+b x+c\right)(x+1) \quad--------(1)
\end{aligned}
$$

From inspection, the coefficient of x^{3} on the left side is 1 and the coefficient of x^{3} on the right side is a; hence $a=1$.

Equating the constant terms: $c=-4$
Equation (1) can now be written as

$$
x^{3}+x^{2}-4 x-4=\left(x^{2}+b x-4\right)(x+1)
$$

We have equated the coefficients of x^{3} and the constant terms; we can now equate the coefficients of x^{2} or x to determine the value of b.

Equate the coefficients of $x^{2}: b+1=1 \quad \Longrightarrow \quad b=0$
Therefore,

$$
\begin{aligned}
x^{3}+x^{2}-4 x-4 & =\left(x^{2}-4\right)(x+1) \\
& =(x+2)(x-2)(x+1)
\end{aligned}
$$

The method of equating coefficients is particularly useful when one of the factors of $p(x)$ is an irreducible quadratic.

For example, $x^{2}+x+1$ is a factor of $p(x)=2 x^{4}+3 x^{3}+2 x^{2}-1 ;$ as $p(x)$ is a quartic, it is the product of $x^{2}+x+1$ and another quadratic, that is,

$$
2 x^{4}+3 x^{3}+2 x^{2}-1=\left(a x^{2}+b x+c\right)\left(x^{2}+x+1\right)---(2)
$$

Equating coefficients of $x^{4}: a=2$
Equating constants: $c=-1$
Equation (2) can now be written as

$$
2 x^{4}+3 x^{3}+2 x^{2}-1=\left(2 x^{2}+b x-1\right)\left(x^{2}+x+1\right)
$$

In order to determine the value of b, we can either equate the coefficients of x^{3} or the coefficients of x^{2}.

Equating the coefficients of $x^{3}: 2+b=3 \quad \Longrightarrow \quad b=1$
Therefore,

$$
\begin{aligned}
2 x^{4}+3 x^{3}+2 x^{2}-1 & =\left(2 x^{2}+x-1\right)\left(x^{2}+x+1\right) \\
& =(2 x-1)(x+1)\left(x^{2}+x+1\right)
\end{aligned}
$$

Example 1

Factor $p(x)=3 x^{3}-8 x^{2}-x+10$ fully.

Solution

We need to consider the factors of 10 and 3 to determine the first zero of $p(x)$.
Factors of $10: \pm 1, \pm 2, \pm 5, \pm 10$
Factors of $3: \pm 1, \pm 3$
Possible zeros are: $\pm 1, \pm 2, \pm 5, \pm 10, \pm 1 / 3, \pm 2 / 3, \pm 5 / 3, \pm 10 / 3$

- $p(1)=3(1)^{3}-8(1)^{2}-1+10=4 \neq 0$
- $p(-1)=3(-1)^{3}-8(-1)^{2}-(-1)+10=0$

As $x+1$ is a factor of $p(x)$, it can be written as the product of $x+1$ and a quadratic,

$$
3 x^{3}-8 x^{2}-x+10=\left(a x^{2}+b x+c\right)(x+1)
$$

Equating coefficients of $x^{3}: a=3$
Equating constants: $c=10$
It follows that

$$
3 x^{3}-8 x^{2}-x+10=\left(3 x^{2}+b x+10\right)(x+1)
$$

Equating coefficients of $x: b+10=-1 \quad \Longrightarrow \quad b=-11$
Hence,

$$
\begin{aligned}
3 x^{3}-8 x^{2}-x+10 & =\left(3 x^{2}+b x+10\right)(x+1) \\
& =(3 x-5)(x-2)(x+1)
\end{aligned}
$$

Example 2

Solve $x^{4}+x^{3}-2 x^{2}-6 x-4=0$.

Solution

Possible roots are $\pm 1, \pm 2, \pm 4$
Let $p(x)=x^{4}+x^{3}-2 x^{2}-6 x-4$

- $p(1)=(1)^{4}+(1)^{3}-2(1)^{2}-6(1)-4=-10 \neq 0$
- $p(-1)=(-1)^{4}+(-1)^{3}-2(-1)^{2}-6(-1)-4=0$
$x+1$ is a factor of $p(x)$ and $p(x)$ can be written as a product of $x+1$ and a cubic polynomial, that is,

$$
x^{4}+x^{3}-2 x^{2}-6 x-4=\left(a x^{3}+b x^{2}+c x+d\right)(x+1)
$$

Equating coefficients of $x^{4}: a=1$
Equating constants: $d=-4$
Thus, $p(x)$ can be written as

$$
p(x)=x^{4}+x^{3}-2 x^{2}-6 x-4=\left(x^{3}+b x^{2}+c x-4\right)(x+1)
$$

Equating coefficients of $x^{3}: b+1=1 \quad \Longrightarrow \quad b=0$
Equating coefficients of $x^{2}: b+c=-2 \quad \Longrightarrow \quad c=-2$
Now,

$$
p(x)=x^{4}+x^{3}-2 x^{2}-6 x-4=\left(x^{3}-2 x-4\right)(x+1)
$$

The cubic $x^{3}-2 x-4$ should be factored into linear factors, if possible.
Let $f(x)=x^{3}-2 x-4$.
Possible zeroes of $f(x)$ are $\pm 1, \pm 2, \pm 4$.
$f(2)=2^{3}-2(2)-4=8-4-4=0$, so $x-2$ is a factor of $f(x)$.
$f(x)=x^{3}-2 x-4$ is a product of $x-2$ and a quadratic, that is,

$$
f(x)=x^{3}-2 x-4=\left(a x^{2}+b x+c\right)(x-2)
$$

Equating coefficients of x^{3} gives $a=1$.
Equating constants gives $-2 c=-4$, that is $c=2$.
Equating coefficients of $x: c-2 b=-2 \quad \Longrightarrow \quad b=2$
As the quadratic, $x^{2}+2 x+2$ is irreducible, the fully factored form of $f(x)$ is

$$
f(x)=x^{3}-2 x-4=\left(x^{2}+2 x+2\right)(x-2)
$$

The original quartic in fully factored form is thus

$$
x^{4}+x^{3}-2 x^{2}-6 x-4=(x+1)(x-2)\left(x^{2}+2 x+2\right)
$$

The solution to $x^{4}+x^{3}-2 x^{2}-6 x-4=0$ is equivalent to the solution to $(x+1)(x-2)\left(x^{2}+2 x+2\right)=$ 0 , that is

$$
x=-1,2
$$

